

Comparing Miniature Atomic Clocks

Thomas CAO

ELECSPN T&F Experts SERVING THE WORLD

Working principle

© https://tf.nist.gov/ofm/smallclock/CPT_clocks.html

➤Theory: Coherent PopulationTrap(CPT) — No absorption while two energy levels are confined by two lasers; then dark line can act as the clock reference while tuning the CPT

Advantages

 No cavity & laser source: size and power consumption will be reduced without limitation with MEMS&CMOS fabrication procession
 Chip-scale size and power

CPT Clock: prototype Chip Size Atomic Clock

- CPT theory found by Vanier(Canadian scientist)
- ② The first prototype was made by NIST USA with MEMS
- ③ No formal commercial product

© https://tf.nist.gov/ofm/smallclock/CPT_clocks.html

CPT Clock product: SA.3x (MAC)

Key Features

- High precision atomic clock
- Smallest form factor (2)
- (3)**Oscillator** pinouts
- Low power consumption (4)
- RoHs 6/6 compliant (5)

© Symmetricom

ELECSPN SERVING THE WORLD

Key Specifications

(1) Output frequency: 10MHz Phase noise: SA.35m/SA.33m SA.31m 1 Hz <-70 dBc/Hz <-65 dBc/Hz 10 Hz <-87 dBc/Hz 100 Hz <-114 dBc/Hz 1 kHz <-130 dBc/Hz 10 kHz <-140 dBc/Hz <-140 dBc/Hz ③ Short-term stability: \leq 5E-11/ $<\pm$ 2.5E-11/day 4 Aging: (5) Repeatability: \leq 5E-11 6 Operating temperature: -10°C~ 75°C

7 Size: 51*51*18(mm³)

<-85 dBc/Hz <-112 dBc/Hz <-130 dBc/Hz ≦3E-11/ $<\pm$ 5E-11/day

CPT Clock product: SA.45 (CSAC)

Key Features

- 1 Power consumption < 120mW
- 2 Less than 17cm³ volume
- ③ 10 MHz CMOS compatible output
- ④ 1PPS in /out for synchronization
- 5 RS-232 for monitoring

Key Specifications

(1) Output frequency: 10MHz ② Short term stability: $\leq 2.5E-10/$ ③ Phase noise(SSB): 1 Hz < -50 dBc/Hz10 Hz <-70 dBc/Hz 100 Hz <-113 dBc/Hz 1 kHz <-128 dBc/Hz 10 kHz <-140 dBc/Hz (4) Aging: $<\pm$ 9E-10/ month (5) Repeatability: \leq 5E-10 6 Operating temperature: -10°C~ 35°C \bigcirc Size: 1.6"*1.39"*0.45" (40.6 \times 35.3 \times 11.4 mm³)

Our CPT Clock XHTF1040 (AXCPT1040)

Key Features

- (1) Miniaturization
- ② 3.3V low voltage supply,
 - 1.5W low power consumption
- ③ UART serial port communication
- ④ Reference second synchronization

& 1 PPS output (5) TOD output

Key Specifications

- Output frequency: 10MHz
 Short term stability: ≦2E-10/
 Phase noise(SSB): ≦-90dBc/Hz @10Hz ≦-120dBc/Hz @10Hz ≦-140dBc/Hz @10Hz
 145dBc/Hz @10Hz
 Frequency deviation: <3E-11/per day
- \bigcirc Starting-up feature(Norm.temp): ≤5min lock
- 6 Repeatability: \leq 5E-11
- ⑦ Reference second synchronization:
 - 1 PPS synchronization accuracy $\leq \pm$ 50ns
- Operating temperature: -45°C~ 65°C
- 9 Size: 45 *36*15 mm³

Comparison of CPT clocks

	vacuum sealing	size(mm)	power(w) (@25°C)	cost/price	reliability
SA.3x	NO	51×51×18	5	medium	high
SA.45	YES	40.6×35.3×11.4	0.115	very high	medium
XHTF1040 (AXCPT1040)	NO	45×36×14.5	2.5	medium	high

Working principle

 Theory: Rubidium lamp pumps Rubidium atoms into absorbing cell to invert population: The clock transition will occur at 6.8GHz. RF stimulates Rubidium atoms.
 A cavity is necessary to enclose RF to act as magnetron that is perpendicular to the atomic Zeeman vector.

Advantages

- 1 Design of cavity & lamp are classic and reliable compared to miniature Rb clock
- (2) High reliability and maturity: 70% market occupancy including GPS, Glonass, Galileo, Compass
- ③ Low cost

Conventional Rb Clock LPFRS (Switzerland)

Main Features:

- Very low temperature sensitivity
- Excellent short term stability
- Low power consumption
- Fast warm-up
- Small volume / low profile
- Rb with lamp extended life expectancy (20 years)
- Industry standard pin out
- RS 232 interface for centre frequency

adjustment and monitoring of operation parameters

Conventional Rb Clock AR133A (Israel)

Main Features:

- Long-term-stability: 5E-11/month
- 2E-12 frequency accuracy & 100ns 1PPS accuracy relative to 1PPS input when disciplined
- Short term stability: 5E-12 @ 100s
- Phase noise: -150dBc/Hz @10kHz
- Outputs: 10 MHz and 1PPS
- Supply voltage: 15 VDC / 12 VDC (option)
- Steady state power < 8.25W
- Power-saving mode < 1.8W Steady State (option)</p>
- Size: 77 x 77 x 25.4 mm³ (3" x 3" x 1")

Our Conventional Rb Clock XHTF1031 (AXRB1031)

Main Features:

- Smallest Size: 51x 51 x 25 mm
- Long-term-stability: <5E-11/month,1E-9/year</p>
- Wide operating temperature: -35°C~65°C
- RoHS compliant
- Outputs: 10 MHz sine wave/CMOS
- Supply voltage: 12 V to 15 V
- Steady state power consumption < 6W</p>

Comparison of Conventional Rb clocks

	vacuum sealing	size(mm)	power(w) (@25°C)	cost/price	reliability
LPFRS	NO	76×77× 36.5	10	high	medium
AR133A	NO	77 ×77× 25.4	7.5	medium	medium
XHTF1031	NO	51×51×25	5	medium	medium

Atomic Clock Production

- Top 1 with this ability in China (just below USA on a worldwide scale)
- Owns the complete Atomic Clock production equipment (see below)
- Owns vibration test platform and vacuum chambers to test Atomic Clocks

Filling equipment for Rb atoms

Vibration test platform

Temperature & humidity test chamber

Aging test line for Atomic Clocks

Temperature test set