
Specification AXIOM75SH Rev.: 3 Date: 2023-04-13

Oscillator type: **Ultra-Low Phase Noise OCXO for Space Application**

(Space COTS version)

Features:

- Lower cost Commercial Off-The-Shelf version (COTS)
- Frequency range 80 to 125 MHz
- Dedicated for LEO~MEO applications
- Manufactured according to MIL-PRF-55310 Level "S"
- Radiation hardened 40 krad(Si) total dose (TID)
- Radiation hardened SEL immunity / SET insensitive
- ITAR Free Manufactured in Germany
- **Ultra-Low Phase Noise**
- **High Frequency Stability and Very Low Aging**
- Hermetical sealed THD package
- **Short lead time**

Models:

Item	Engineering Model (EM)	Flight Model (FM)	Note
Quartz	Synthetic HiQ Quartz,	Synthetic HiQ Quartz,	1
Crystal	SC-cut, HC-35/U 4-point	SC-cut, HC-35/U 4-point	
Electrical	COTS parts	COTS parts	2
Components		Automotive Grade	
		and/or HighRel Heritage	
Mechanical	Stainless steel package	Stainless steel package	-
Components	with Ni finish	with Ni finish	
Workmanship	IPC610 Class 3	ECSS-Q-ST-70-08C and	-
(Soldering)		ECSS-Q-ST-70-38C	
Rad Hardness	-	40 krad(Si) TID	3
	Acceptance Testi	ng	
Screening	Test procedure as	Х	4
Group-B	commercial models	Х	-
Group-C	-	On request	5

Notes:

- 1. Swept Quartz material available on request.
- 2. Higher product levels of add-on components on request. For tin whisker mitigation components with SnPb finish can be used on request.
- 3. Tested up to 50 krad and SEE tested up to 60 MeV·cm²/mg
- 4. Screening procedure can be modified IAW customer requirements.
- 5. Group-C (LAT) can be performed based on customer requirements.

Ordering Code:

Model	Product category	Revision	Frequency [MHz]
AXIOM75SH	EM	Rev.3	100.000
	FM		

Example: AXIOM75SH-FM_Rev.3 - 100.000 MHz

0. Contents:

- 1. Electrical specification
- 2. Mechanical specification
- 3. Applicable documents
- 4. General flow of manufacturing
- 5. Acceptance Testing
 - 5.1 Screening
 - **5.2 Group B inspection**
 - 5.3 Electrical measurements
- 6. Radiation
- 7. Components, Materials and Processes
- 8. Marking
- 9. Data Documentation
- 10. Handling, Packaging and Delivery
- 11. Specification History

1. Electrical specification

Parameter	min.	typ.	max.	Unit	Condition
Frequency range	80		125	MHz	
Standard frequencies	100	0.000 / 120.	000	MHz	
Frequency stability				•	•
Initial tolerance @ +25°C		±100	±300	ppb	Vc @ VREF/2
vs. operating temperature range			±50	ppb	
vs. supply voltage variation			±10	ppb	V _S ±5%
vs. load change			±10	ppb	R _L ±10%
Long term (aging) per day			±1	ppb	after 30 days operation
Long term (aging) 1 st year		±50	±100	ppb	after 30 days operation
vs. radiation			±400	ppb	(Note 4)
Frequency adjustment range					
Electronic Frequency Control (EFC)	±1	±2		ppm	(Note 3, 4)
EFC voltage V _C	0	VREF/2	VREF	V	
EFC slope (Δf / ΔV _C)		Positive			
EFC input impedance	100			kΩ	
RF output				•	•
Signal waveform		Sine wave			
Load R _L		50		Ω	±5%
Output level	+7	+11		dBm	
Output level change vs. radiation			±1	dB	(Note 4)
Harmonics			-30	dBc	
Spurious			-90	dBc	
Warm-up time @ +25°C			3	min	$\Delta f/f_0 < \pm 100 \text{ ppb}$
Phase noise @ 100 MHz		-105	-100	dBc/Hz	@ 10 Hz
(Note 4, 5)		-135	-130	dBc/Hz	@ 100 Hz
		-163	-160	dBc/Hz	@ 1 kHz
		-175	-170	dBc/Hz	@ 10 kHz
		-180	-175	dBc/Hz	@ ≥100 kHz
G-Sensitivity		0.5		ppb/g	per axis
Reference voltage VREF output		10.0		V	Load ≥ 10 kΩ
Supply voltage Vs	11.4	12.0	12.6	V	
Current consumption (steady state)			150	mA	@ +25°C
Current consumption (warm-up)			300	mA	
Operating temperature range	-20		+70	°C	

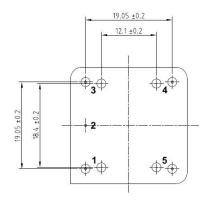
Table 1 – Electrical Performance and Characteristics

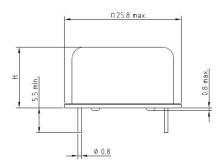
Notes:

- 1. Terminology and test conditions are according to IEC60679-1 and MIL-PRF-55310 unless otherwise stated
- 2. Classification (MIL-PRF-55310): Type 4 (OCXO), Class 1 (Discrete Technology), Product Level "S"
- 3. Tuning range is sufficient to compensate for initial tolerance, temperature stability, load & supply change, aging over 10 years and change due to radiation.
- 4. Radiation of 40 krad(Si) total dose (TID). Radiation low dose test of OCXO series was performed up to 50 krad. Please consult factory for radiation report. Better frequency stability vs. radiation is available with swept Quartz material on request.
- 5. Phase noise degradation vs. radiation is below 1 dB.

Absolute Maximum Ratings

Parameter	Min.	Max.	Unit	Condition / Remark
Supply Voltage Vs	-0.5	Vs + 10%	V	V _s to GND
Control Voltage V _C	-0.5	15	V	V _s to GND
Load R _L	0	∞	Ω	Must not cause any damage
Operable temperature range	-40	+80	°C	Operation of unit without any damage
Storage temperature range	-55	+105	°C	-


Table 2 – Maximum Ratings


2. Mechanical specification

Parameter	Min.	Тур.	Max.	Unit	Condition
Enclosure (see drawing) (LxWxH)	25.8	(25.8x12.7	max.	mm	IEC 60679-3 CO 43
Weight			20	g	
Case material	Stainless steel		-		
Case finish	Cover: Stainless steel blank		-		
	Header: Ni 8 μm				
Pins	Glass / Kovar		-	EM: RoHS	
	So	older dippe	ed		FM: Sn63Pb37

Table 3 – Mechanical specification

Enclosure drawing

Pin connections

Pin#	Symbol	Function
1	RF OUT	RF Output
2	GND	Ground
3	Vc	Control Voltage (EFC)
4	VREF	Reference Voltage
5	Vs	Supply Voltage

3. Applicable documents

The following specifications and standards are part of this specification:

ECSS-Q-ST-70-08C The manual soldering of high-reliability electrical connections

ECSS-Q-ST-70-38C High-reliability soldering for surface-mount and mixed technology

ESCC21300 Terms, Definitions, Abbreviations, Symbols and Units

ESCC21700 General Requirements for the marking of ESCC components

MIL-STD-55310 General specification for crystal-controlled oscillators

MIL-STD-202 Test Method Standard for electronic and electrical component parts

MIL-STD-883 Test Method Standard for Microcircuits

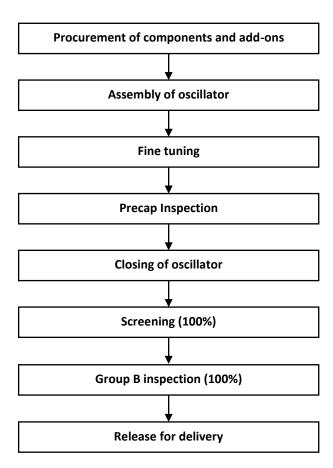
IEC 60679-1 Quartz crystal-controlled oscillators of assessed quality

Part 1: Generic specification

Order of precedence

In the event of a conflict between the text of this specification and the references cited herein, the order of precedence shall be as follows:

- (1) Purchase order
- (2) Oscillator detail specification AXIOM75SH
- (3) Generic specification MIL-PRF-55310
- (4) Other documents


Germany

4. General flow of manufacturing

The figure below shows the overall flow for manufacturing:

5. Acceptance Testing

5.1 Screening

Table 4 shows the screening procedure according to MIL-PRF-55310 Product level "S".

#	Test	Reference
1	Electrical measurements at room temperature (Initial)	IEC 60679-1 (see Table 1)
2	Thermal Shock	MIL-STD-202, Method 107, Condition A-1
3	Burn-in (load) *1	MIL-PRF-55310
4	Seal Test – Gross Leak	MIL-STD-202, Method 112, Condition D
5	Electrical measurements vs. temperature	IEC 60679-1 (see Table 1)
6	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)
7	External Visual Inspection	ESCC20500 / MIL-STD-883 Method 2009

Table 4 - Screening procedure

Notes:

1. Burn-in can be performed at any step after assembly and is usually performed as pre-aging procedure

Table 5 shows the detailed test conditions for each step in table 4.

#	Test	Test Condition
4	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
	room temperature (Initial)	Table 8
2	Thermal Shock	-40 to +80°C, 25 cycles, max. 5 minutes transfer time,
	Thermal Shock	15 minutes dwell time
3	Burn-in (load)	@ T = $+85$ °C for 10 days (nominal V _S and Load)
4	Seal Test – Gross Leak	No bubbles allowed
5	Electrical measurements vs.	@ T = -30 to +70°C, 10 °C steps with ± 1 °C tolerance
3	temperature	Limits: See Table 1
6	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
0	room temperature (Final)	Table 8
7	External Visual Inspection	ESCC20500 / MIL-STD-883 Method 2009

Table 5 – Detailed test conditions for screening procedure

Germany

5.2 Group B inspection (Aging)

Table 6 shows the Group B inspection procedure.

#	Test	Reference
1	I Aging test	MIL-PRF-55310, Clause 4.7.1.5 Product level "S"
2	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)

Table 6 - Group B inspection procedure

Notes:

1. Group B inspection may be performed before or after screening procedure. Final electrical measurements are only performed once after completion of screening and Group B inspection.

Table 7 shows the detailed test conditions for each step in table 6.

#	Test	Test Condition
		@ T _{amb} = 30°C±3°C for 30 days (nominal V _S and Load)
1	Aging test	Frequency measurement every hour
		Limits Aging: See Table 1
_	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
2	room temperature (Final)	Table 8

Table 7 – Detailed test conditions for Group B inspection procedure

5.3 Electrical measurements

Table 8 shows all electrical measurements with its respective conditions and limits, which are performed for all models. If not otherwise stated all measurements are performed at $T_{amb} = 25^{\circ}C \pm 3^{\circ}C$ and after a sufficient stabilization time.

#	Parameter	Test Method	Conditions	Initial	Final	Limits
1	Initial frequency	IEC 60679-1	$V_S = 12 \text{ V}, R_L = 50 \Omega$	Χ	Χ	Table 1
2	Output level	IEC 60679-1	$V_S = 12 \text{ V}, R_L = 50 \Omega$	Χ	Χ	Table 1
3	Current consumption (steady state)	IEC 60679-1	$V_S = 12 \text{ V}, R_L = 50 \Omega$	X	Х	Table 1
4	Current consumption (warm-up)	IEC 60679-1	$V_S = 12 \text{ V}, R_L = 50 \Omega$	X	Х	Table 1
5	Tuning range	IEC 60679-1	$V_S = 12 \text{ V}, R_L = 50 \Omega$	-	Χ	Table 1
6	Phase noise	IEC 60679-1	$V_S = 12 \text{ V}, R_L = 50 \Omega$	-	Χ	Table 1
7	Harmonics	IEC 60679-1	$V_S = 12 \text{ V}, R_L = 50 \Omega$	-	Х	Table 1
8	Spurious	IEC 60679-1	$V_S = 12 \text{ V}, R_L = 50 \Omega$	-	Χ	Table 1

Table 8 - Electrical measurements

Germany

6. Radiation

The oscillator is capable of meeting all electrical performance requirements after exposure to a total ionizing dose (TID) of 40 krad(Si). The OCXO is based on a Space COTS approach, where the OCXO design incorporates only bipolar technology for the active components, making the OCXO SEL immune. The possible SET effects cannot degrade the oscillator performance due to the used circuitry. The radiation performance has been verified by a radiation test (Co 60) up to 50 krad(Si) and the radiation report is available on request.

7. Components, Materials and Processes

The FM models are built on the basis of the following requirements for components, materials and processes:

- All add-on components are specially-selected commercial off-the-shelf (COTS) versions. The used active components are automotive qualified in accordance with AEC-Q100/200 and/or have a long HighRel heritage (>10 years, several thousand pieces, no failure) in many products with MIL-PRF-55310 Product Level "B" or "S".
- The crystal is made of synthetic high Q quartz material with low inclusion density and low etch channel density (according to IEC 60758). The quartz crystal has a hermetically sealed package.
- Soldering is done in accordance with ECSS-Q-ST-70-08C (manual soldering) and ECSS-Q-ST-70-38C (surface mount and mixed technology).
- No pure tin is used for the package leads. Soldering of the COTS components is done with Sn63Pb37 solder.
- The printed circuit board (PCB) is commercially procured.
- The marking is resistant to Zestron VD, Isopropyl alcohol (99% pure) and Ethyl alcohol (99.5% pure), tested in accordance with ESCC24800.

8. Marking

The marking of the parts is accordance with ESCC21700. The content is as follows:

- (1) Company Logo AXTAL
- (2) Part number AXTAL (according to order code)
- (3) Part number Customer (on request)
- (4) Nominal frequency
- (5) Serial number
- (6) Date Code

9. Data Documentation

General

With each delivery the following data documentation package is supplied:

- (1) Certificate of Conformity (CoC)
- (2) Test data (full report of all inspections)

The following additional documents can be delivered on request:

- Declared Component List
- Equipment list (Testing & Measuring)
- Product Reliability Analysis (MTBF calculation)
- Radiation Report

Certificate of Conformity

The certificate includes the following content:

- Full company information (Logo, Name, Address)
- Type and specification (part number and revision)
- Nominal frequency
- Number of purchase order
- Lot identification
- Range of serial numbers
- Number of delivered parts
- Authorized signature in behalf of manufacturer (including stamp and date)

Germany

10. Handling, Packaging and Delivery

- Some add-ons are susceptible to damage by electrostatic discharge. Therefore, suitable ESD precautions for handling during use and manufacturing must be employed.
- In order to minimize the risk of damage, all kinds of shock during handling and manufacturing must be avoided.
- The parts are packaged in a way to ensure adequately safeguarding against mechanical and electrical injury and deterioration due to humidity.
- The primary package is labeled as ESD sensitive component.

11. Specification History

Rev.	Drawing	Date	Remarks	Author	Checked
		[dd.mm.yyyy]			
1	D0	06.05.2014	First issue AXIOM75S	НН	BN
1	D0	16.02.2018	Model renamed to AXIOM75SH, swept material removed	НН	BN
2	D0	23.06.2021	Various parameters and information updated	НН	BN
2	D1	24.06.2021	Minor editorial changes	НН	BN
3	D0	27.01.2022	Major update: screening & inspection procedures updated, radiation level increased and various radiation data added, various other updates	нн	BN
3	D1	02.02.2022	Minor correction table "Models"	HH	HH
3	D2	13.04.2023	Editorial update – Additional information added	НН	НН

Germany