
Specification AXLE5032S Rev.: 2 Date: 2025-01-21

Oscillator type: Low Phase Noise TCXO in 5x3.2 mm ceramic package for

Space Application (Space COTS version)

Features:

- Lower cost Commercial Off-The-Shelf version (COTS)
- Dedicated for LEO~MEO applications
- Manufactured according to MIL-PRF-55310 Level "S"
- Radiation hardened 40 krad(Si) total dose (TID)
- Radiation hardened SEL immune > 90 MeV
- ITAR Free Manufactured in Europe
- **Low Phase Noise**
- High Frequency Stability
- Hermetical sealed 5x3.2 mm ceramic package
- Short lead time

Models:

Item	Engineering Model	Flight Model	Note
	(EM)	(FM)	
Quartz Synthetic HiQ Quartz,		Synthetic HiQ Quartz,	1
Crystal	AT-cut	AT-cut	
Electrical COTS parts		COTS parts	-
Components		Automotive Grade	
		and/or HighRel Heritage	
Mechanical	Ceramic package with	Ceramic package with	-
Components	metal cover	metal cover	
Workmanship	Hybrid manufacturing	Hybrid manufacturing	-
Rad Hard	-	40 krad(Si) TID	2
	Acceptance Testi	ng	
Screening Test procedure as		X	3
Group-B	commercial models	X	-
Group-C	=	On request	4

Notes:

- 1. Swept Quartz material available on request.
- Tested up to 50 krad and SEE tested up to 125 MeV·cm²/mg
 Screening procedure can be modified IAW customer requirements.
- 4. Group-C (LAT) can be performed based on customer requirements.

Ordering Code:

Model	Product category	Options	Revision	Frequency [MHz]
AXLE5032S	EM	See table 1	Rev.2	10.000 ~ 50.000
	FM			

Example: AXLE5032S-FM-V-C_Rev.2 - 40.000 MHz

0. Contents:

- 1. Electrical specification
- 2. Mechanical specification & Handling
- 3. Applicable documents
- 4. General flow of manufacturing
- 5. Acceptance Testing
 - 5.1 Screening
 - 5.2 Group B inspection
 - 5.3 Electrical measurements
- 6. Radiation
- 7. Components, Materials and Processes
- 8. Marking
- 9. Data Documentation
- 10. Handling, Packaging and Delivery
- 11. Specification History

1. Electrical specification

Parameter	min.	typ.	max.	Unit	Condition
Frequency range	10		50	MHz	
Standard frequencies (Note 3)	20.000	/ 40.000 /	50.000	MHz	
Frequency stability				•	·
Initial tolerance @ +25°C		±0.3	±1	ppm	V _C = 1.5 V
vs. operating temperature range		±0.3	±1	ppm	
vs. supply voltage variation (pushing)			±0.2	ppm	Vs ±5%
vs. load change (pulling)			±0.2	ppm	R∟ ±5%
Long term (aging) 1 st year			±1	ppm	@ +40°C
Long term (aging) 5 years			±3	ppm	@ +40°C
vs. radiation			±1.5	ppm	(Note 4)
Frequency adjustment range					•
Electronic Frequency Control (EFC)	±5	±10		ppm	Option 1 = "V" (Note 5, 6)
EFC voltage V _C	0.5	1.5	2.5	٧	
EFC slope ($\Delta f / \Delta V_c$)		Positive			
EFC input impedance	100			kΩ	
RF output – Option 2 = "C" (CSW)		•		•	·
Signal waveform	Clip	ped sine w	/ave		
Load R∟	10) kΩ // 10	pF		±5%
Output voltage	0.8	1.2		Vpp	
Phase noise	Please consult factory		actory		
	9	ee table 1	A		
RF output – Option 2 = "H" (HCMOS)					
Signal waveform		LVCMOS			
Load R _L		10 pF			±10%
Symmetry (duty cycle)	45		55	%	@ V _S /2
Rise & fall time			5	ns	@ 10% ~ 90% Vs
Phase noise	Pleas	e consult fa	actory		
	9	see table 1	В		
Supply voltage Vs	3.15	3.3	3.45	V	
Current consumption			6	mA	Option 2 = "C"
			8	mA	Option 2 = "H"
Operating temperature range	-40		+85	°C	

Table 1 – Electrical Performance and Characteristics

Notes:

- 1. Terminology and test conditions are according to IEC60679-1 and MIL-PRF-55310 unless otherwise stated
- 2. Classification (MIL-PRF-55310): Type 5 (TCXO), Class 2 (Hybrid Technology), Product Level "S"
- 3. Arbitrary frequency within specified frequency range on request
- 4. Radiation of 40 krad(Si) total dose (TID). Radiation low dose test of TCXO series was performed up to 50 krad. Please consult factory for radiation report.
- 5. For option 1 = "N" (No EFC) pin 1 can be left open.
- 6. Tuning range is sufficient to compensate for initial tolerance, temperature stability, pushing, pulling, min. of 5 years aging & radiation of 40 krad(Si)

Ordering Code

Model	Product category	Option 1 [EFC]	Option 2 [Output]	Revision	Frequency [MHz]
AXLE5032S	EM	"N" = No EFC	"C" = Clipped Sine Wave (CSW)	Rev.2	10.000 ~ 50.000
	FM	"V" = EFC	"H" = HCMOS (LVCMOS)		

Examples:

- (1) AXLE5032S-FM-V-C_Rev.2 40.000 MHz (with EFC and CSW output)
- (2) AXLE5032S-FM-N-H_Rev.2 40.000 MHz (without EFC and HCMOS output)

Typical phase noise performance

Offeet	Frequ	Frequency		
Offset	20 MHz	50 MHz	Unit	
1 Hz	-65	-60	dBc/Hz	
10 Hz	-95	-90	dBc/Hz	
100 Hz	-124	-115	dBc/Hz	
1 kHz	-146	-135	dBc/Hz	
≥10 kHz	-156	-154	dBc/Hz	

Table 1A – Clipped Sine Wave Output (CSW)

Offers	Frequ	Frequency		
Offset	20 MHz	50 MHz	Unit	
1 Hz	-63	-56	dBc/Hz	
10 Hz	-94	-86	dBc/Hz	
100 Hz	-123	-111	dBc/Hz	
1 kHz	-144	-131	dBc/Hz	
≥10 kHz	-154	-152	dBc/Hz	

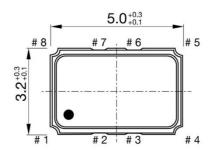
Table 1B – HCMOS Output (LVCMOS)

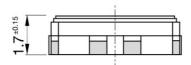
Note: For better phase noise performance please see our AXLE7050S series.

Absolute Maximum Ratings

Parameter	Min.	Max.	Unit	Condition / Remark
Supply Voltage V _S	-0.5	4.5	V	V _S to GND
Control Voltage V _C	-0.5	4.5	V	V _s to GND
Load R _L – CSW Output	500	∞	Ω	Must not cause any damage
Load R _L – HCMOS Output	0	15	pF	
Operable temperature range	-50	+95	°C	Operation of unit without any damage
Storage temperature range	-55	+105	°C	-

Table 2 - Maximum Ratings




2. Mechanical specification & Handling

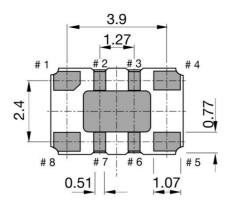

Parameter	Min.	Тур.	Max.	Unit	Condition
Enclosure (see drawing) (LxWxH)	5.	0 x 3.2 x 1	.7	mm	Hermetically sealed
Weight			1	g	
Case	Ceran	nic packago	e with	-	
	metal cover				
Pins	NiAu plated		-		
Crystal Package (top side)	SAC3 soldered		-		
Moisture Sensitivity Level	MSL 1		-	IPC/JEDEC J-STD-020C	
Cleaning	Washable		-		
Electrostatic Discharge (ESD)	MM Class M2: < 200 V		-		
Reflow Profile	max. +26	60°C for 10	seconds	-	IPC/JEDEC J-STD-020C

Table 3 - Mechanical specification & Handling

Enclosure drawing

Pin connections

Pin #	Symbol	Function
1	Vc	Control Voltage (EFC) *
2	D.N.C.	Do Not Connect
3	D.N.C.	Do Not Connect
4	GND	Ground
5	RF OUT	RF Output
6	D.N.C.	Do Not Connect
7	D.N.C.	Do Not Connect
8	Vs	Supply Voltage

^{*} For option 1 = "N" (no EFC) pin 1 can be left open

Germany

3. Applicable documents

The following specifications and standards are part of this specification:

ESCC21300 Terms, Definitions, Abbreviations, Symbols and Units

MIL-STD-55310 General specification for crystal-controlled oscillators

MIL-STD-202 Test Method Standard for electronic and electrical component parts

MIL-STD-883 Test Method Standard for Microcircuits

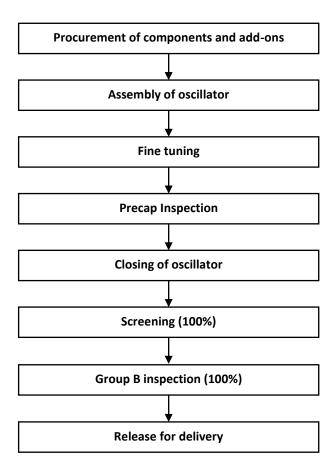
IEC 60679-1 Quartz crystal-controlled oscillators of assessed quality

Part 1: Generic specification

Order of precedence

In the event of a conflict between the text of this specification and the references cited herein, the order of precedence shall be as follows:

- (1) Purchase order
- (2) Oscillator detail specification AXLE5032S
- (3) Generic specification MIL-PRF-55310
- (4) Other documents


Germany

4. General flow of manufacturing

The figure below shows the overall flow for manufacturing:

5. Acceptance Testing

5.1 Screening

Table 4 shows the screening procedure according to MIL-PRF-55310 Product level "S".

#	Test	Reference
1	Electrical measurements at room temperature (Initial)	IEC 60679-1 (see Table 1)
2	Thermal Shock	MIL-STD-202, Method 107, Condition A-1
3	Burn-in (load) *1	MIL-PRF-55310
4	Seal Test – Fine Leak *2	MIL-STD-202, Method 112, Condition D
5	Electrical measurements vs. temperature	IEC 60679-1 (see Table 1)
6	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)
7	External Visual Inspection	ESCC20500 / MIL-STD-883 Method 2009

Table 4 – Screening procedure

Notes:

- 1. Burn-in can be performed at any step after assembly and is usually performed as pre-aging procedure
- 2. Fine leak test is performed for the crystal, which is a 100% test during crystal manufacturing

Table 5 shows the detailed test conditions for each step in table 4.

#	Test	Test Condition	
1	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)	
1	room temperature (Initial)	Table 8	
2	Thermal Shock	-40 to +80°C, 25 cycles, max. 5 minutes transfer time,	
	THEITHAI SHOCK	15 minutes dwell time	
3	Burn-in (load)	@ T = $+85$ °C for 10 days (nominal V _S and Load)	
4	Seal Test – Fine Leak	MIL-STD-202, Method 112, Condition D	
5	Electrical measurements vs.	@ T = T_{MIN} to T_{MAX} , 5°C steps with ±1°C tolerance	
5	temperature	Limits: See Table 1	
6	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)	
0	room temperature (Final)	Table 8	
7	External Visual Inspection	ESCC20500 / MIL-STD-883 Method 2009	

Table 5 – Detailed test conditions for screening procedure

Germany

5.2 Group B inspection (Aging)

Table 6 shows the Group B inspection procedure.

#	Test	Reference
1	Aging test	MIL-PRF-55310, Clause 4.7.1.5 Product level "S"
2	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)

Table 6 - Group B inspection procedure

Notes:

1. Group B inspection may be performed before or after screening procedure. Final electrical measurements are only performed once after completion of screening and Group B inspection.

Table 7 shows the detailed test conditions for each step in table 6.

#	Test	Test Condition
1		@ T _{amb} = 30°C±3°C for 10 days (nominal V _S and Load)
	Aging test	Frequency measurement every hour
		Limits Aging: See Table 1
2	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
	room temperature (Final)	Table 8

Table 7 – Detailed test conditions for Group B inspection procedure

5.3 Electrical measurements

Table 8 shows all electrical measurements with its respective conditions and limits, which are performed for all models. If not otherwise stated all measurements are performed at $T_{amb} = 25^{\circ}C \pm 3^{\circ}C$ and after a sufficient stabilization time.

#	Parameter	Test Method	Conditions	Initial	Final	Limits
1	Initial frequency	IEC 60679-1	$V_S = 3.3 \text{ V, } R_L = 10 \text{ k}\Omega \text{ // } 10 \text{ pF}$	Χ	Χ	Table 1
2	Output level	IEC 60679-1	$V_S = 3.3 \text{ V, } R_L = 10 \text{ k}\Omega \text{ // } 10 \text{ pF}$	Χ	Χ	Table 1
3	Current consumption	IEC 60679-1	$V_S = 3.3 \text{ V, } R_L = 10 \text{ k}\Omega \text{ // } 10 \text{ pF}$	Χ	Χ	Table 1
4	Tuning range	IEC 60679-1	$V_S = 3.3 \text{ V, } R_L = 10 \text{ k}\Omega \text{ // } 10 \text{ pF}$	-	Χ	Table 1
5	Phase noise	IEC 60679-1	$V_S = 3.3 \text{ V, } R_L = 10 \text{ k}\Omega \text{ // } 10 \text{ pF}$	-	Χ	Table 1

Table 8 – Electrical measurements

6. Radiation

The oscillator is capable of meeting all electrical performance requirements after exposure to a total ionizing dose (TID) of 40 krad(Si). The oscillator is based on a Space COTS approach and the radiation performance has been verified by a radiation test (Co 60) up to 50 krad(Si) and a SEE test up to 125 MeV·cm²/mg with the very similar TCXO series AXLE7050S. The oscillator is SEL immune and didn't show any other destructive events during the radiation tests. Radiation reports are available on request.

7. Components, Materials and Processes

The oscillators are built on the basis of the following requirements for components, materials and processes:

- All add-on components are specially-selected commercial off-the-shelf (COTS) versions.
- The crystal is made of synthetic high Q quartz material with low inclusion density and low etch channel density (according to IEC 60758).
- The oscillator and crystal unit are in hermetically sealed packages.
- The manufacturing is done in hybrid technology.
- No pure tin is used inside the oscillator, as package or lead finish. The crystal resonator on top of the main package is SAC3 soldered. A version with SnPb solder for full tin whisker mitigation is available on request.
- The marking is resistant to Zestron VD, Isopropyl alcohol (99% pure) and Ethyl alcohol (99.5% pure), tested in accordance with ESCC24800.

8. Marking

The marking of the parts is accordance with ESCC21700. The content is as follows:

(1) First line: Frequency & Lot number

(2) Second line: Serial number

9. Data Documentation

General

With each delivery the following data documentation package is supplied:

- (1) Certificate of Conformity (CoC)
- (2) Test data (full report of all inspections)

The following additional documents can be delivered on request:

- Declared Component List
- Equipment List (Testing & Measuring)
- Radiation Report

Certificate of Conformity

The certificate includes the following content:

- Full company information (Logo, Name, Address)
- Type and specification (part number and revision)
- Nominal frequency
- Number of purchase order
- Lot identification
- Range of serial numbers
- Number of delivered parts
- Authorized signature in behalf of manufacturer (including stamp and date)

Germany

10. Handling, Packaging and Delivery

- Some add-ons are susceptible to damage by electrostatic discharge. Therefore, suitable ESD precautions for handling during use and manufacturing must be employed.
- In order to minimize the risk of damage, all kinds of shock during handling and manufacturing must be avoided.
- The parts are packaged in a way to ensure adequately safeguarding against mechanical and electrical injury and deterioration due to humidity.
- The primary package is labeled as ESD sensitive component.

11. Specification History

Rev.	Drawing	Date	Remarks	Author	Checked
		[dd.mm.yyyy]			
1	D0	14.04.2023	First issue	НН	НН
2	D0	20.01.2025	Order options updated. Parameters updated and additional information added	НН	НН
2	D1	21.01.2025	Solder information & package picture updated	НН	НН

Germany