

Specification	AXIS45S	Rev.: 1	Date: 2022-02-01	
Oscillator type:	Low Noise 10~100 MHz VCXO for Space Application with			
	sing wave output in DII 14/4 nin nackage			

sine wave output in DIL14/4-pin package

Features:

- Manufactured according to MIL-PRF-55310 Level "S"
- Radiation hardened 100 krad(Si) total dose (TID)
- Radiation hardened SEE insensitive
- Usage of space grade class 1 add-on components
- ITAR Free Manufactured in Germany
- Low Phase Noise
- High Frequency Stability
- Hermetical sealed THD package

Models:

Item	Engineering Model	Flight Model	Lot Acceptance Test			
	(EM)	(FM)	Model (LAT)			
Quartz	Synthetic HiQ Quartz	Synthetic HiQ	Synthetic HiQ			
Crystal		Swept Quartz	Swept Quartz			
Electrical	COTS	HiRel Parts	HiRel Parts			
Components		ECSS-Q-ST-60C class 1	ECSS-Q-ST-60C class 1			
Mechanical	Form Fit Function	Stainless steel package	Stainless steel package			
Components		with Ni/Au finish	with Ni/Au finish			
Workmanship	IPC610 Class 3	ECSS-Q-ST-70-08C and	ECSS-Q-ST-70-08C and			
(Soldering)		ECSS-Q-ST-70-38C	ECSS-Q-ST-70-38C			
Rad Hard	-	100 krad(Si) TID	100 krad(Si) TID			
	Acceptance Testing					
Screening	Standard test	Х	Х			
Group-A	procedure for	Х	Х			
Group B	non-space products	Х	Х			
Group C	-	-	Х			
DPA	-	-	On request			

Ordering Code:

Model	Product category	Revision	Frequency [MHz]
AXIS45S	EM	Rev.1	10~100
	FM		
	LAT		

Example: AXIS45S-FM_Rev.1 – 80.000 MHz

TAL ADVANCED XTAL PRODUCTS

0. Contents:

- **1. Electrical specification**
- 2. Mechanical specification
- 3. Applicable documents
- 4. General flow of manufacturing
- 5. Acceptance Testing
 - 5.1 Screening
 - 5.2 Group A inspection
 - 5.3 Group B inspection (Aging)
 - 5.4 Group C inspection
 - 5.5 Electrical measurements
 - 5.6 Destructive Physical Analysis (DPA)
- 6. Radiation
- 7. Components, Materials and Processes
- 8. Marking
- 9. Data Documentation
- 10. Handling, Packaging and Delivery
- **11. Specification History**

TAL ADVANCED XTAL PRODUCTS

1. Electrical specification

Parameter	min.	typ.	max.	Unit	Condition
Frequency range (Note 3)	10		100	MHz	
Frequency stability		•			•
vs. operating temperature range			±10	ppm	ref. to f _{nominal}
vs. supply voltage variation (pushing)			±0.5	ppm	V _s ±5%
vs. load change (pulling)			±0.5	ppm	R _L ±5%
Long term (aging) 1 st year			±0.5	ppm	@ +40°C
Long term (aging) over 10 years			±4	ppm	@ +40°C
Frequency adjustment range (Note 4)					
Electronic Frequency Control (EFC)	±15			ppm	
EFC voltage V_C	0		5	V	
EFC slope ($\Delta f / \Delta V_c$)		Positive			
EFC input impedance	100			kΩ	
RF output (Note 5)					
Signal waveform		Sine wave			
Load R∟		50		Ω	±5%
Output level	+3	+6		dBm	
Harmonics			-30	dBc	
Spurious			-90	dBc	
Phase noise	Please	e consult f	actory		
Supply voltage Vs	4.75	5.0	5.25	V	
Current consumption (steady state)			20	mA	
Operating temperature range	-20		+70	°C	

Table 1 – Electrical Performance and Characteristics

Notes:

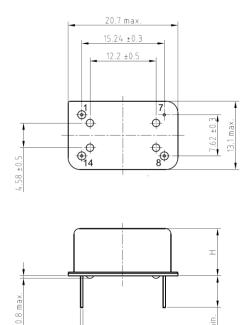
- 1. Terminology and test conditions are according to IEC60679-1 and MIL-PRF-55310, unless otherwise stated
- Classification (MIL-PRF-55310): Type 2 (VCXO), Class 1 (Discrete Technology), Product Level "S"
 Other frequencies on request. No frequency multiplication.
 Tuning range and tuning voltage can be matched to your requirements.

- 5. Output level and phase noise can be matched to your requirements. Phase noise depends on tuning range.

Absolute Maximum Ratings

Parameter	Min.	Max.	Unit	Condition / Remark
Supply Voltage Vs	-0.5	Vs + 10%	V	Vs to GND
Control Voltage Vc	-0.5	15	V	Vs to GND
Load R∟	0	8	Ω	Must not cause any damage
Storage temperature range	-40	+85	°C	-

Table 2 – Maximum Ratings



2. Mechanical specification

Parameter	Min.	Тур.	Max.	Unit	Condition
Enclosure (see drawing) (LxWxH)	20.7x13.1x7.5 max.		mm	IEC 60679-3 CO 02	
Weight			5	g	
Case material	Stainless steel		-		
Case finish	1	NiAu plate	d	-	
Pins	G	ilass / Kova	ar	-	
	1	NiAu plate	d		
PCB and add-ons	No p	oure tin (>9	97%)		

Table 3 – Mechanical specification

Enclosure drawing

5.85 min.

Pin connections

Pin #	Symbol	Function		
1	Vc	Control Voltage (EFC)		
7	GND	Ground, Case		
8	RF OUT	RF Output		
14	Vs	Supply Voltage		

Ø0.45

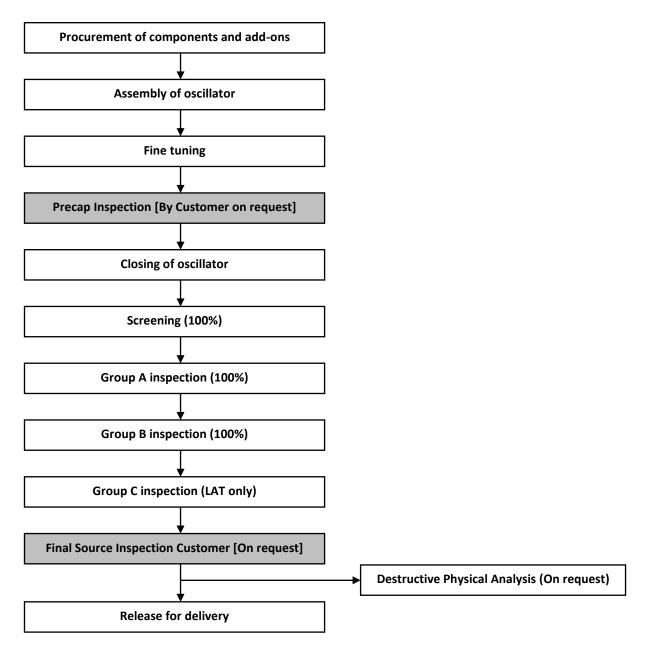
3. Applicable documents

The following specifications and standards are part of this specification:

ECSS-Q-ST-60C	Electrical, Electronic and Electromechanical (EEE) Components
ECSS-Q-ST-70-08C	Manual soldering of high-reliability electrical connections
ECSS-Q-ST-70-38C	High-reliability soldering for surface-mount and mixed technology
ECSS-Q-ST-70-11C	Procurement of printed circuit boards
ECSS-Q-70-71A	Data for selection of space materials and processes
ESCC21300	Terms, Definitions, Abbreviations, Symbols and Units
ESCC21700	General Requirements for the marking of ESCC components
ESCC23500	Requirements for Lead Materials and Finishes for components for space application
MIL-STD-55310	General specification for crystal-controlled oscillators
MIL-STD-202	Test Method Standard for electronic and electrical component parts
MIL-STD-883	Test Method Standard for Microcircuits
IEC 60679-1	Quartz crystal-controlled oscillators of assessed quality Part 1: Generic specification

Order of precedence

In the event of a conflict between the text of this specification and the references cited herein, the order of precedence shall be as follows:


- (1) Purchase order
- (2) Oscillator detail specification AXIS45S
- (3) Generic specification MIL-PRF-55310
- (4) Other documents

4. General flow of manufacturing

The figure below shows the overall flow for manufacturing:

AXIS45S Rev.1 Drawing D0 Page 6(13)

5. Acceptance Testing

5.1 Screening

Α

Table 4 shows the screening procedure according to MIL-PRF-55310 Product level "S".

#	Test	Reference
1	Electrical measurements at room temperature (Initial)	IEC 60679-1 (see Table 1)
2	Random Vibration	MIL-STD-202, Method 214, Condition 1-B
3	Thermal Shock	MIL-STD-202, Method 107, Condition A-1
4	Electrical measurements at room temperature (Interim)	IEC 60679-1 (see Table 1)
5	Burn-in (load)	MIL-PRF-55310
6	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)
7	Electrical measurements at high and low temperature	IEC 60679-1 (see Table 1)
8	Seal Test – Fine Leak and Gross Leak	MIL-STD-202, Method 112, Condition C
0	Sear rest – Fine Leak and Gross Leak	(fine leak) and Condition D (gross leak)
9	Radiographic Inspection (Note 1)	MIL-STD-202, Method 209
10	External Visual Inspection	ESCC20500 / MIL-STD-883 Method 2009

Table 4 – Screening procedure

Notes:

1. May be performed at any point during the test sequence

Table 5 shows the detailed test conditions for each step in table 4.

#	Test	Test Condition
1	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
	room temperature (Initial)	Table 12
2	Random Vibration	50~100 Hz +6 dB/Oct, 100~1000 Hz 0.04 g²/Hz, 1~2 kHz -6 dB/Oct
~		RMS = 7.56 g, 5 minutes per axis
3	Thermal Shock	-40 to +80°C, 25 cycles, max. 5 minutes transfer time,
5	Thermal Shock	15 minutes dwell time
4	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
4	room temperature (Interim)	Table 12
5	Purn in (load)	@ T = +85°C for 10 days (nominal V _s and Load)
2	Burn-in (load)	Drift: $\Delta f/f < \pm 1$ ppm and ± 5 % current consumption (steady state)
6	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
0	room temperature (Final)	Table 12
7	Electrical measurements at	@ T = -20°C to +70°C / 5K steps with ±1°C tolerance
	high and low temperature	Limits: See Table 1
8	Seal Test – Fine Leak and Gross	Fine leak: max. 2·10 ⁻⁷ atm·cm ³ /s He after 2 hours
ð	Leak	Gross leak: 125°C, 20 sec, no bubbles allowed
0	Padiographic Inspection	1 view Y-direction (perpendicular to largest surface)
9	Radiographic Inspection	1 view 90° to Y-direction
10	External Visual Inspection	ESCC20500 / MIL-STD-883 Method 2009

Table 5 – Detailed test conditions for screening procedure

5.2 Group A inspection

Table 6 shows the Group A inspection procedure.

Test	Reference	Test condition
Group A inspection	MIL-PRF-55310, Clause 4.7.1.4	Table V, Product level "S"
Table C. Communities and the		

Table 6 – Group A inspection procedure

Table 7 shows the detailed test conditions for each step of table 6.

#	Test	Test Condition
1	Visual and mechanical inspection	MIL-PRF-55310, paragraph 4.8.1

Table 7 – Detailed test conditions for Group A inspection

Notes:

1. Electrical measurements performed during screening are not repeated during Group A inspection

5.3 Group B inspection (Aging)

Table 8 shows the Group B inspection procedure.

#	Test	Reference
1	Aging test	MIL-PRF-55310, Clause 4.8.35
2	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)

Table8 – Group B inspection procedure

Table 9 shows the detailed test conditions for each step in table 8.

#	Test	Test Condition
1	Aging test	@ T = 70°C±3°C for 30 days (nominal Vs and Load) Frequency measurement every hour Limits Aging: See Table 1
	Electrical measurements at	$@ T_{amb} = 25^{\circ}C \pm 3^{\circ}C \text{ (unless otherwise stated)}$
2	room temperature (Final)	Table 12

Table 9 – Detailed test conditions for Group B inspection procedure

5.4 Group C inspection

Table 10 shows the Group C inspection procedure.

#	Test	Reference		
1	1 Random Vibration MIL-STD-202, Method 214, Condition			
2	2 Mechanical Shock MIL-STD-202, Method 213, Condition F			
3 Thermal Shock MIL-STD-202, Method 107, Condition				
4	High Temperature Storage	Detail specification		
5	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)		
6	Seal Test – Fine Leak and Gross Leak	MIL-STD-202, Method 112, Condition C		
0	Sear rest – Fille Leak and Gross Leak	(fine leak) and Condition D (gross leak)		
7	7 External Visual Inspection ESCC20500 / MIL-STD-883 Method 2009			

Table 10 – Group C inspection procedure

Notes:

1. Group C inspected LAT parts are end of life and shall not be used as flight models

Table 11 shows the detailed test conditions for each step in table 10.

#	Test	Test Condition		
1	Random Vibration	50~100 Hz +6 dB/Oct, 100~1000 Hz 1.0 g²/Hz, 1~2 kHz -6 dB/Oct		
		RMS = 37.8 g, 3 minutes per axis		
2	Mechanical Shock	1500 g, 0.5 ms, half sine, 3 shocks per axis		
3	Thermal Shock	-65 to +125°C, 25 cycles, max. 5 minutes transfer time,		
		15 minutes dwell time		
4	High Temperature Storage	24 hours at -35°C, 24 hours at +70°C, min. 2 hours at T _{amb}		
5	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)		
2	room temperature (Final)	Table 12		
6	Seal Test – Fine Leak and Gross	Fine leak: max. 2·10 ⁻⁷ atm·cm ³ /s He after 2 hours		
0	Leak	Gross leak: 125°C, 20 sec, no bubbles allowed		
7	External Visual Inspection	ESCC20500 / MIL-STD-883 Method 2009		

Table 11 – Detailed test conditions for Group C inspection procedure

5.5 Electrical measurements

Table 12 shows all electrical measurements with its respective conditions and limits, which are performed for all models. If not otherwise stated all measurements are performed at $T_{amb} = 25^{\circ}C \pm 3^{\circ}C$ and after a sufficient stabilization time.

#	Parameter	Test Method	Conditions	Initial / Interim	Final	Limits
1	Initial frequency	IEC 60679-1	$V_{s} = 5.0 V, R_{L} = 50 \Omega$	Х	Х	Table 1
2	Output level & spectrum	IEC 60679-1	$V_{s} = 5.0 V, R_{L} = 50 \Omega$	Х	Х	Table 1
3	Current consumption	IEC 60679-1	$V_{s} = 5.0 V, R_{L} = 50 \Omega$	Х	Х	Table 1
4	Tuning range	IEC 60679-1	V_{s} = 5.0 V, R_{L} = 50 Ω	Х	Х	Table 1
5	Phase noise	IEC 60679-1	V_{s} = 5.0 V, R_{L} = 50 Ω	-	Х	Table 1

Table 12 – Electrical measurements

5.6 Destructive Physical Analysis (DPA)

The destructive physical analysis (DPA) inspects and verifies the internal design, materials, construction and workmanship of the part and extents the lot acceptance test (LAT). The part is disassembled and inspected with the procedure given in table 13.

#	Test	Reference / Condition			
1	External Visual Inspection	MIL-STD-883, Method 2009			
2	Radiographic Inspection	MIL-STD-202, Method 209			
3	Marking Resistance Test	ESCC24800			
4	Opening procedure / Disassembly	Decapsulation tools			
5	Microsection of add-on components	Embedded in 2-component epoxy, evacuated, no plating			
6	Internal Visual Inspection MIL-STD-883, Method 2013				
7	Passive Element Shear Test MIL-STD-883, Method 2019				
8	SEM Inspection add-on components	MIL-STD-883, Method 2018			

Table 13 – DPA procedure

Notes:

- 1. Test order is not sequential
- 2. LAT part is fully destructed after analysis

TAL ADVANCED XTAL PRODUCTS

6. Radiation

The oscillator is capable of meeting all electrical performance requirements after exposure to a total ionizing dose (TID) of 100 krad(Si). The oscillator is SEE insensitive and SEL immune as only bipolar technology is used. The radiation capability can be verified by a radiation analysis in accordance with handbook ECSS-Q-HB-30-01A.

7. Components, Materials and Processes

The FM and LAT models are built on the basis of the following requirements for components, materials and processes:

- All add-on components are compliant with the requirements of ECSS-Q-ST-60C class 1.
- All active components and the quartz crystal have a hermetically sealed package.
- All active components are radiation tolerant. The crystal is made of synthetic swept quartz material.
- Soldering is done by ESA approved personal in accordance with ECSS-Q-ST-70-08C (manual soldering) and ECSS-Q-ST-70-38C (surface mount and mixed technology).
- All used materials are in accordance with ECSS-Q-ST-70-71A. The lead material and finishes are according to ESCC23500. No pure tin is used inside the oscillator, as package or lead finish.
- The printed circuit board (PCB) is procured in accordance with ECSS-Q-ST-70-11C.
- The case material is made of stainless steel (cover and base) with NiAu finish. The pins are made of Kovar with NiAu finish.
- The marking is resistant to Zestron VD, Isopropyl alcohol (99% pure) and Ethyl alcohol (99.5% pure), tested in accordance with ESCC24800.

8. Marking

The Laser marking of the parts is accordance with ESCC21700. The content is as follows:

- (1) Company Logo AXTAL
- (2) Part number AXTAL (according to order code)
- (3) Part number Customer (on request)
- (4) Nominal frequency
- (5) Serial number
- (6) Date Code

AXIS45S Rev.1 Drawing D0 Page 11(13)

9. Data Documentation

General

With each delivery the following data documentation package is supplied:

- (1) Certificate of Conformity (CoC)
- (2) Test data (full report of all inspections)

The following additional documents can be delivered on request:

- Equipment list (Testing & Measuring)
- Declared component list
- Product Reliability Analysis (MTBF)
- Radiation Analysis

Certificate of Conformity

The certificate includes the following content:

- Full company information (Logo, Name, Address)
- Type and specification (part number and revision)
- Nominal frequency
- Number of purchase order
- Lot identification
- Range of serial numbers
- Number of delivered parts
- Authorized signature in behalf of manufacturer (including stamp and date)

AXIS45S Rev.1 Drawing D0 Page 12(13)

10. Handling, Packaging and Delivery

- Some add-ons are susceptible to damage by electrostatic discharge. Therefore, suitable ESD precautions for handling during use and manufacturing must be employed.
- In order to minimize the risk of damage, all kinds of shock during handling and manufacturing must be avoided.
- The parts are packaged in a way to ensure adequately safeguarding against mechanical and electrical injury and deterioration due to humidity.
- The primary package is labeled as ESD sensitive component.

11. Specification History

Rev.	Drawing	Date	Remarks	Author	Checked
		[dd.mm.yyyy]			
1	D0	01.02.2022	First issue	НН	HH