
Specification AXIOM70SL Rev.: 2 Date: 2023-04-13

Oscillator type: Ultra-Low Phase Noise 10 MHz OCXO with HCMOS output

for Space Application (Space COTS version)

Features:

- Lower cost Commercial Off-The-Shelf version (COTS)
- Dedicated for LEO~MEO applications
- Manufactured according to MIL-PRF-55310 Level "S"
- Radiation hardened 10 krad(Si) total dose (TID)
- ITAR Free Manufactured in Germany
- Ultra-Low Phase Noise
- High Frequency Stability and Very Low Aging
- Hermetical sealed THD package
- Short lead time

Models:

Item	Engineering Model	Flight Model	Note
	(EM)	(FM)	
Quartz	Synthetic HiQ Quartz,	Synthetic HiQ Quartz,	1
Crystal	SC-cut, HC-43/U	SC-cut, HC-43/U	
Electrical	COTS parts	COTS parts	2
Components		Automotive Grade	
		and/or HighRel Heritage	
Mechanical	Stainless steel package	Stainless steel package	-
Components	with Ni finish	with Ni finish	
Workmanship	IPC610 Class 3	ECSS-Q-ST-70-08C and	-
(Soldering)		ECSS-Q-ST-70-38C	
Rad Hardness	=	10 krad(Si) TID	3
	Acceptance Testi	ng	
Screening	Test procedure as	Х	4
Group-B commercial models X		X	-
Group-C	-	On request	5

Notes:

- 1. Swept Quartz material available on request.
- Higher product levels of add-on components on request. For tin whisker mitigation components with SnPb finish can be used on request.
- 3. Guaranteed by design.
- 4. Screening procedure can be modified IAW customer requirements.
- 5. Group-C (LAT) can be performed based on customer requirements.

Ordering Code:

Model	Product category	Revision	Frequency [MHz]
AXIOM70SL	EM	Rev.2	10.000
	FM		

Example: AXIOM70SL-FM Rev.2 - 10.000 MHz

0. Contents:

- 1. Electrical specification
- 2. Mechanical specification
- 3. Applicable documents
- 4. General flow of manufacturing
- 5. Acceptance Testing
 - 5.1 Screening
 - 5.2 Group B inspection
 - 5.3 Electrical measurements
- 6. Radiation
- 7. Components, Materials and Processes
- 8. Marking
- 9. Data Documentation
- 10. Handling, Packaging and Delivery
- 11. Specification History

contact@axtal.com fon: +49 (6261) 939834 fax: +49 (6261) 939836

1. Electrical specification

Parameter	min.	typ.	max.	Unit	Condition
Nominal frequency (Note 3)		10.000		MHz	
Frequency stability					
Initial tolerance @ +25°C		±50	±100	ppb	V _C @ VREF/2
vs. operating temperature range			±10	ppb	
vs. supply voltage variation			±5	ppb	V _S ±5%
vs. load change			±5	ppb	R _L ±10%
Long term (aging) per day		±0.1	±0.5	ppb	after 30 days operation
Long term (aging) 1 st year		±20	±50	ppb	after 30 days operation
Frequency adjustment range					
Electronic Frequency Control (EFC)	±0.5	±0.8		ppm	(Note 4)
EFC voltage V _C	0	VREF/2	VREF	V	
EFC slope (Δf / ΔVc)		Positive			
EFC input impedance	100			kΩ	
RF output					
Signal waveform		HCMOS			
Load R _L		15		pF	±10%
Symmetry (duty cycle)	40		60	%	@ V _s /2
Rise & decay time			5	ns	@ 10% ~ 90% Vs
Spurious			-90	dBc	
Warm-up time @ +25°C			3	min	$\Delta f/f_0 < \pm 100 \text{ ppb}$
Phase noise @ 10 MHz		-105	-100	dBc/Hz	@ 1 Hz
		-135	-130	dBc/Hz	@ 10 Hz
		-155	-150	dBc/Hz	@ 100 Hz
		-163	-155	dBc/Hz	@ 1 kHz
		-165	-155	dBc/Hz	@ ≥10 kHz
Short term stability (Allan deviation)		3·10 ⁻¹²	5·10 ⁻¹²		τ = 1 s
		3.10-12	5·10 ⁻¹²		τ = 10 s
		4·10 ⁻¹²	1.10-11		τ = 100 s
Reference voltage VREF output		4.0		٧	Load ≥ 10 kΩ
Supply voltage V _S	4.75	5.0	5.25	٧	
Current consumption (steady state)			250	mA	@ +25°C
Current consumption (warm-up)			600	mA	
Operating temperature range	-20		+70	°C	

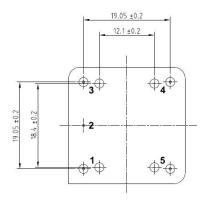
Table 1 – Electrical Performance and Characteristics

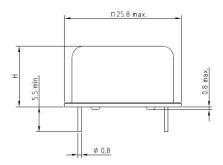
Notes:

- 1. Terminology and test conditions are according to IEC60679-1 and MIL-PRF-55310 unless otherwise stated
- 2. Classification (MIL-PRF-55310): Type 4 (OCXO), Class 1 (Discrete Technology), Product Level "S"
- 3. Other frequencies on request
- 4. Tuning range is sufficient to compensate for initial tolerance, temperature stability, load & supply change and aging over 10 years.

Absolute Maximum Ratings

Parameter	Min.	Max.	Unit	Condition / Remark
Supply Voltage V _S	-0.5	Vs + 10%	V	V _s to GND
Control Voltage V _C	-0.5	15	V	V _s to GND
Load R _L	0	∞	Ω	Must not cause any damage
Operable temperature range	-40	+80	°C	Operation of unit without any damage
Storage temperature range	-55	+105	°C	-


Table 2 – Maximum Ratings


2. Mechanical specification

Parameter	Min.	Тур.	Max.	Unit	Condition
Enclosure (see drawing) (LxWxH)	25.8	(25.8x12.7	max.	mm	IEC 60679-3 CO 43
Weight			20	g	
Case material	Stainless steel		-		
Case finish	Cover: Stainless steel blank		-		
	Header: Ni 8 μm				
Pins	Glass / Kovar		-	EM: RoHS	
	So	older dippe	ed		FM: Sn63Pb37

Table 3 – Mechanical specification

Enclosure drawing

Pin connections

Pin#	Symbol	Function
1	RF OUT	RF Output
2	GND	Ground
3	Vc	Control Voltage (EFC)
4	VREF	Reference Voltage
5	Vs	Supply Voltage

3. Applicable documents

The following specifications and standards are part of this specification:

ECSS-Q-ST-70-08C The manual soldering of high-reliability electrical connections

ECSS-Q-ST-70-38C High-reliability soldering for surface-mount and mixed technology

ESCC21300 Terms, Definitions, Abbreviations, Symbols and Units

ESCC21700 General Requirements for the marking of ESCC components

MIL-STD-55310 General specification for crystal-controlled oscillators

MIL-STD-202 Test Method Standard for electronic and electrical component parts

MIL-STD-883 Test Method Standard for Microcircuits

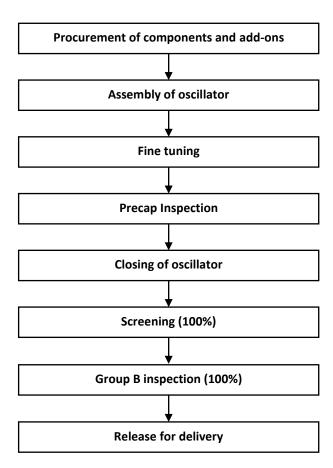
IEC 60679-1 Quartz crystal-controlled oscillators of assessed quality

Part 1: Generic specification

Order of precedence

In the event of a conflict between the text of this specification and the references cited herein, the order of precedence shall be as follows:

- (1) Purchase order
- (2) Oscillator detail specification AXIOM70SL
- (3) Generic specification MIL-PRF-55310
- (4) Other documents


Germany

4. General flow of manufacturing

The figure below shows the overall flow for manufacturing:

5. Acceptance Testing

5.1 Screening

Table 4 shows the screening procedure according to MIL-PRF-55310 Product level "S".

#	Test	Reference
1	Electrical measurements at room temperature (Initial)	IEC 60679-1 (see Table 1)
2	Thermal Shock	MIL-STD-202, Method 107, Condition A-1
3	Burn-in (load) *1	MIL-PRF-55310
4	Seal Test – Gross Leak	MIL-STD-202, Method 112, Condition D
5	Electrical measurements vs. temperature	IEC 60679-1 (see Table 1)
6	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)
7	External Visual Inspection	ESCC20500 / MIL-STD-883 Method 2009

Table 4 - Screening procedure

Notes:

1. Burn-in can be performed at any step after assembly and is usually performed as pre-aging procedure

Table 5 shows the detailed test conditions for each step in table 4.

#	Test	Test Condition
1	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
1	room temperature (Initial)	Table 8
2	Thermal Shock	-40 to +80°C, 25 cycles, max. 5 minutes transfer time,
	THEITHAI SHOCK	15 minutes dwell time
3	Burn-in (load)	@ T = $+85$ °C for 10 days (nominal V _s and Load)
4	Seal Test – Gross Leak	No bubbles allowed
5	Electrical measurements vs.	@ T = -30 to +70°C, 10 °C steps with ± 1 °C tolerance
3	temperature	Limits: See Table 1
6	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
0	room temperature (Final)	Table 8
7	External Visual Inspection	ESCC20500 / MIL-STD-883 Method 2009

Table 5 – Detailed test conditions for screening procedure

Germany

5.2 Group B inspection (Aging)

Table 6 shows the Group B inspection procedure.

#	Test	Reference
1	l Aging test	MIL-PRF-55310, Clause 4.7.1.5 Product level "S"
2	Electrical measurements at room temperature (Final)	IEC 60679-1 (see Table 1)

Table 6 - Group B inspection procedure

Notes:

1. Group B inspection may be performed before or after screening procedure. Final electrical measurements are only performed once after completion of screening and Group B inspection.

Table 7 shows the detailed test conditions for each step in table 6.

#	Test	Test Condition
		@ T _{amb} = 30°C±3°C for 30 days (nominal V _S and Load)
1	Aging test	Frequency measurement every hour
		Limits Aging: See Table 1
2	Electrical measurements at	@ T _{amb} = 25°C±3°C (unless otherwise stated)
	room temperature (Final)	Table 8

Table 7 – Detailed test conditions for Group B inspection procedure

5.3 Electrical measurements

Table 8 shows all electrical measurements with its respective conditions and limits, which are performed for all models. If not otherwise stated all measurements are performed at $T_{amb} = 25^{\circ}C \pm 3^{\circ}C$ and after a sufficient stabilization time.

#	Parameter	Test Method	Conditions	Initial	Final	Limits
1	Initial frequency	IEC 60679-1	$V_S = 5 V, R_L = 15 pF$	Χ	Χ	Table 1
2	Output signal	IEC 60679-1	$V_S = 5 V, R_L = 15 pF$	Χ	Χ	Table 1
3	Current consumption (steady state)	IEC 60679-1	V _S = 5 V, R _L = 15 pF	Х	Х	Table 1
4	Current consumption (warm-up)	IEC 60679-1	V _S = 5 V, R _L = 15 pF	Х	Х	Table 1
5	Tuning range	IEC 60679-1	$V_S = 5 V, R_L = 15 pF$	-	Χ	Table 1
6	Phase noise	IEC 60679-1	$V_S = 5 V, R_L = 15 pF$	-	Χ	Table 1
7	Spurious	IEC 60679-1	$V_S = 5 V, R_L = 15 pF$	-	Χ	Table 1

Table 8 – Electrical measurements

Germany

6. Radiation

The oscillator is capable of meeting all electrical performance requirements after exposure to a total ionizing dose (TID) of 10 krad(Si). The OCXO is based on a Space COTS approach, where the OCXO design incorporates mixed semiconductor technology (bipolar & CMOS) for the active components. Thus, no explicit levels for SEL or SET can be guaranteed. The radiation performance can be verified by a TID / SEE radiation test on request.

7. Components, Materials and Processes

The FM models are built on the basis of the following requirements for components, materials and processes:

- All add-on components are specially-selected commercial off-the-shelf (COTS) versions. The used active components are automotive qualified in accordance with AEC-Q100/200 and/or have a long HighRel heritage (>10 years, several thousand pieces, no failure) in many products with MIL-PRF-55310 Product Level "B" or "S".
- The crystal is made of synthetic high Q quartz material with low inclusion density and low etch channel density (according to IEC 60758). The quartz crystal has a hermetically sealed package.
- Soldering is done in accordance with ECSS-Q-ST-70-08C (manual soldering) and ECSS-Q-ST-70-38C (surface mount and mixed technology).
- No pure tin is used for the package leads. Soldering of the COTS components is done with Sn63Pb37 solder.
- The printed circuit board (PCB) is commercially procured.
- The marking is resistant to Zestron VD, Isopropyl alcohol (99% pure) and Ethyl alcohol (99.5% pure), tested in accordance with ESCC24800.

8. Marking

The marking of the parts is accordance with ESCC21700. The content is as follows:

- (1) Company Logo AXTAL
- (2) Part number AXTAL (according to order code)
- (3) Part number Customer (on request)
- (4) Nominal frequency
- (5) Serial number
- (6) Date Code

9. Data Documentation

General

With each delivery the following data documentation package is supplied:

- (1) Certificate of Conformity (CoC)
- (2) Test data (full report of all inspections)

The following additional documents can be delivered on request:

- Declared Component List
- Equipment list (Testing & Measuring)
- Product Reliability Analysis (MTBF calculation)

Certificate of Conformity

The certificate includes the following content:

- Full company information (Logo, Name, Address)
- Type and specification (part number and revision)
- Nominal frequency
- Number of purchase order
- Lot identification
- Range of serial numbers
- Number of delivered parts
- Authorized signature in behalf of manufacturer (including stamp and date)

10. Handling, Packaging and Delivery

- Some add-ons are susceptible to damage by electrostatic discharge. Therefore, suitable ESD precautions for handling during use and manufacturing must be employed.
- In order to minimize the risk of damage, all kinds of shock during handling and manufacturing must be avoided.
- The parts are packaged in a way to ensure adequately safeguarding against mechanical and electrical injury and deterioration due to humidity.
- The primary package is labeled as ESD sensitive component.

11. Specification History

Rev.	Drawing	Date	Remarks	Author	Checked
		[dd.mm.yyyy]			
1	D0	16.02.2018	First issue	НН	BN
2	D0	27.02.2022	Major update: screening & inspection procedures updated, various data added and updated	НН	НН
2	D1	02.02.2022	Minor correction table "Models"	НН	НН
2	D2	13.04.2023	Editorial update – Additional information added	НН	НН

Germany