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Abstract - Results of investigations of temperature 
sensors using singly rotated Gallium Orthophosphate 
(GaPO4) Y-cut resonators are presented in this paper. 

Depending on rotating angle the most important 
parameters - sensitivity, resolution and linearity - 
differ in a wide range. Theoretical calculations leads 
to cuts owning nearly a linear response with sensitiv-
ity between 44.5 ppm/°C and 46.5 ppm/°C within a 
temperature range from room temperature to 600 °C 
with a high resolution of about 10-6 °C. First meas-
urements confirm the theoretically predicted sensitiv-
ity. 

The broad thermal stability range of GaPO4 can 
also be used for temperature sensors based on surface 
acoustic wave devices. By theoretical calculations, 
suitable orientations with high temperature coeffi-
cients are identified. 

I. INTRODUCTION 

The high temperature stability of the α-quartz like 
phase of GaPO4 up to 970 °C favours this crystal for 
sensors used in high temperature environments. An 
interesting application is a resonant piezoelectric 
temperature sensor based on bulk acoustic waves 
(BAW) with a large measuring range of more than 
1000 °C, from low temperatures up to 970 °C [1]. 

Temperature sensors made of quartz can be used 
up to about 350 °C because of the beginning of the 
stress induced twinning at this temperature which 
decreases stability and sensitivity of the sensor. At a 
temperature of 573 °C the α-β phase transition occurs 
and piezoelectricity disappears, so quartz cannot be 
used at higher temperatures. There are several reso-
nant piezoelectric temperature sensors based on 
quartz with different properties. A successful devel-
opment was the LC (linear temperature coefficient)-
cut from Hewlett-Packard [2] with an accuracy of 
0.02 °C and a useable resolution of 10-4 °C. In the era 
of microprocessors non-linearity of resonant fre-

quency versus temperature became less important and 
so in 1987 Ziegler developed the so called HT-cut 
quartz temperature sensor [3], a singly rotated Y-cut 
(Θ = -4 °) with a high sensitivity of 90 ppm/°C. 

All of them have the small useable measurement 
range in common. 

II. THEORETICAL CALCULATIONS 

The calculations are based on the theory by Ste-
vens and Tiersten for doubly rotated quartz trapped 
energy and contoured resonators [4]. First calcula-
tions were done for singly rotated thickness shear Y-
cut resonators in the temperature range from room 
temperature to 600 °C. 

The best cut for crystal thermometers has to 
achieve the following specifications: 
- the change in resonant frequency in measurement 

range should be high 
- the resonant frequency temperature dependence 

has to be unique 
- the electromechanical coupling should be high. 
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Figure 1: Change in resonant frequency between 
25 °C and 600 °C depending on cut-angle 



Relating to these requirements some calculations 
were made. Figure 1 shows the change in resonant 
frequency depending on cut-angle Θ (cut-angle Θ 
according to standard IEEE 176-1978). 

Two cuts show nearly the same change in resonant 
frequency over the whole measurement range, the 
cuts near Y+27° and Y-47°, respectively. A restric-
tive condition is the resonant frequency versus tem-
perature dependence, which has to be unique in the 
whole temperature range for this application. The 
characteristics are shown in Figure 2, where the cut 
near Y-27° has a positive temperature coefficient of 
frequency (TCF) and the cut near Y-47° has a nega-
tive TCF. 
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Figure 2: Resonant frequency versus temperature 

The different sensitivities of these two cuts are 
shown in Figure 3. 
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Figure 3: Sensitivity of the cuts Y+27° and Y-47° 

An important parameter is the electromechanical 
coupling which describes the interaction between 
electrical and mechanical forces. The higher the cou-

pling the smaller the electrodes can be and the un-
harmonic modes are more suppressed also. The elec-
tromechanical coupling coefficients k of these two 
cuts are shown in Table 1. 

Table 1: Electromechanical coupling k 
Resonator k (%) 

Y+27° 16.9 
Y-47° 3.6 

 
These calculations lead to the decision that the cut 

near Y+27° is the most promising cut for temperature 
sensors basing on BAW-resonators. 

Table 2: Properties between 25 °C and 600 °C 

Resonator 
Resonant fre-

quency change 
(ppm) 

Sensitivity 
(ppm/°C) 

Y+27.16° 26581 ≈ 45 
Y-46.93° -25131 -20 ÷ -70 

III. TEMPERATURE SENSOR PREPARATION AND 
MEASUREMENT SETUP 

The resonators are circular discs with a diameter 
of 5 mm and a resonant frequency of about 6 MHz. 
They are plano-convex lapped with a radius of curva-
ture of 50 mm. The electrodes are sputtered Pt-layers 
with a thickness of 200 nm and a diameter of 2.5 mm. 
The crystals are mounted in a standard HC-52/U 
holder, where the crystallographic X-axes of the crys-
tal is perpendicular to the bonding surfaces of the 
holder to reduce the damping of the crystal due to 
holder mounting. The crystal is electrically contacted 
to the holder with a high temperature stable electro-
conductive glue (Aremco Pyro-duct 597). Figure 4 
shows the geometry of the crystals with electrodes. 

 

Figure 4: Crystal with electrodes 

Before mounting into the holder the crystals were 
tempered for 8 hours at a temperature of 700 °C. This 
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was done to make a pre-ageing to increase the stabil-
ity of the sensor and reduce ageing effects. 

The temperature dependence was measured in a 
dry-well calibrator in the temperature range up to 
140 °C and in the temperature range up to 600 °C in a 
tubular heater. 

Measurement Setup 
To ensure an equal temperature at the resonator 

and the temperature sensor a small steel body as heat-
reservoir with holes for both sensors was used, shown 
in Figure 5. This steel body is connected with two 
rods to a connection plate with connectors for the 
oscillator and the resistance meter. 

The characteristic properties are measured with 
the passive method with a HP 4195a network ana-
lyzer. 

The measurements in the temperature chamber are 
done in the active method with an oscillator which 
provides the resonant frequency and a damping signal 
too. The resistance of the Pt100 was measured in 4-
wire technique. 

Figure 5: Measurement arrangement 

IV. EXPERIMENTAL RESULTS 

In Figure 6 the temperature resonant frequency 
characteristic is given. Four cycles are shown in this 
Figure, i. e. the resonator was heated up from 60 °C 
to 600 °C with a following cooling down back to 
60 °C for four times. 
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Figure 6: Temperature – resonant frequency charac-

teristic 

A better illustration of the behaviour is to show 
the deviation to an idealised curve. In Figure 7 the 
deviation to a fitted curve (3. order polynomial fit) of 
the first heating up from first cycle is shown. The 
numbers are indicating the consecutive measurement 
cycles. 
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Figure 7: Temperature deviation of consecutive 

measurement cycles 

The measured temperature sensitivity of the sensor 
is shown in Figure 8. The derived sensitivity of all 6 
measurement cycles are shown. The dashed line indi-
cates a 2. order polynomial fit. 
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Figure 8: Sensitivity of the resonator between 25 °C 

and 600 °C 

V. SAW CALCULATIONS 

Theoretical calculations lead to the resonant fre-
quency - temperature dependence shown in Figure 9. 
The cut is a Y-Boule -5° (or Y-Boule +5° cut, which 
leads to the same results) with an expected sensitivity 
between 15 ppm/°C at 25 °C and 4.5 ppm/°C at 
700 °C. 
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Figure 9: Theoretically calculated resonant frequency 
temperature dependence of a SAW Y-Boule -5° reso-

nator 

VI. DISCUSSION AND CONCLUSION 

First investigations show the potential of GaPO4 
BAW resonators for temperature sensors up to 
600 °C. 

The predicted sensitivity of about 45 ppm/°C is 
reached. 

The measurements were done in air in a tubular 
heater. The reached stability of the resonators is too 
high to determine different parameters in this envi-
ronment accurately. So the next step has to be to 
make these experiments with encapsulated and her-
metically sealed crystals in a highly stable tempera-
ture chamber to determine the stability (ageing), 
resonant frequency - temperature behaviour and hys-
teresis accurately. 

By theoretical calculations, suitable orientations of 
SAW devices with high temperature coefficients are 
identified. Passive remote monitoring of the surface 
acoustic wave frequency or delay time allows wire-
less temperature sensing at temperatures where no 
electronic circuits can be operated. 

VII. REFERENCES 

 [1] C. Reiter, P.W. Krempl, H. Thanner, W. 
Wallnöfer, P. Worsch, “Material properties of 
GaPO4 and their relevance for applications“; 
3rd European Workshop of Piezoelectric Ma-
terials, Montpellier, October 2000; Ann. 
Chim. Sci. Mat. 26 (2001) 91-94; see also: 
www.gapo4.com 

[2] D. L. Hammond and A. Benjaminson, “The 
crystal resonator – a digital transducer,” IEEE 
spectrum, pp. 53-58, April 1969. 

[3] H. Ziegler, “A low-cost digital temeprature 
sensor system,” Sensors and actuators, vol. 5, 
pp. 169-178, 1984.  

[4] D. S. Stevens and H. F. Tiersten, “An analy-
sis of doubly rotated quartz resonators utiliz-
ing essentially thickness modes with trans-
verse variation,” J. Acoust. Soc. Am., vol. 79 
(6), pp. 1811-1826, June 1986. 


	0-7803-7582-3/02/$17: 
	00 (c) 2002 IEEE: 0-7803-7582-3/02/$17.00 (c) 2002 IEEE

	2002 IEEE ULTRASONICS SYMPOSIUM-949: 2002 IEEE ULTRASONICS SYMPOSIUM-949
	2002 IEEE ULTRASONICS SYMPOSIUM-950: 2002 IEEE ULTRASONICS SYMPOSIUM-950
	2002 IEEE ULTRASONICS SYMPOSIUM-951: 2002 IEEE ULTRASONICS SYMPOSIUM-951
	2002 IEEE ULTRASONICS SYMPOSIUM-952: 2002 IEEE ULTRASONICS SYMPOSIUM-952


