

Comparison Of The Characteristics Of Quartz, Langasite and Gallium Phosphate Bulk Acoustic Wave Resonators

Bernd Neubig*

*AXTAL, Buchfinkenweg 8, D-74931 Lobbach, E-Mail: BNeubig@axtal.com

Content

- 🚿 Scope
- X Langasite (LGS) and GaPO₄ Material
- X Comparison of Resonator Characteristics
- [™] Temperature Compensation for Sensors
- ▶ VCXO and OCXO application
- [≫] Summary & Conclusions

Scope

✗ LGS and GaPO₄ are rather thoroughly characterized piezoelectric crystal materials

- ✗ Both materials are now commercially available
- Solution Notice Noti

Langasite (LGS) La₃Ga₅SiO₁₄

Courtesy FOMOS Moscow / Russia

Gallium Phosphate GaPO₄

Courtesy PIEZOCRYST Graz / Austria

- \gg Why use these materials ?
 - Higher coupling factor k than quartz, while high Q-factor and good temperature stability

	k _{max}
Quartz	8 %
Langasite	14.8 %
GaPO ₄	15.8 %

- allows wider frequency pulling for VCXO (Voltage Controlled Crystal Oscillator)
- allows sufficient pulling for higher overtones (OCXO)
- allows higher sensitivity for capacitor/resonator sensor systems

\times Why use these materials ?

Lower frequency constant $N = f \cdot t$ than quartz

	N
Quartz (AT cut)	1660 kHz mm
Langasite (Y-cut)	1380 kHz mm
GaPO ₄ (Y ^{-17°} cut)	1270 kHz mm

allows smaller resonators at lower frequency

Application at very high temperatures

	Limiting factor				
Quartz	Twinning >350°C, $\alpha \rightarrow \beta$ phase transition @ 573°C				
Langasite	Melting point @ 1470°C				
GaPO ₄	$\alpha \rightarrow \beta$ -cristobalite phase transition @ 970°C				

\times What are the limiting factors?

Manufacturing cost

Quartz	Cheap raw material, cost-effective hydrothermal growth
Langasite	High Gallium price, low-cost & fast Czochrasky growth
GaPO ₄	High Gallium price, expensive & slow hydrothermal
	growth, yield limitations

Available wafer size

Quartz	4" wafers commercially available in high volume
Langasite	3" and 4" wafers commercially available
GaPO ₄	Blanks with dislocation-free areas of 2~4 cm ²

✗ Some Characteristic Parameters №

		Quartz	Langasite	GaPO ₄
Moh's hardness		7	6,6	5
Density / kg·m ⁻³		2650	5750	3570
Thermal expansion	α_{11}	13,7	5,1	12,8
in ppm·K ⁻¹	α_{33}	7,5	3,6	3,7
Dielectric permittivity	ε_{11}^S	4,43	18,9	5,8
	ε_{33}^{S}	4,63	50,7	6,6
Piezoelectric coefficient	d ₁₁	2,3	6,2	4,5
in pC·N ⁻¹	d_{14}	0,57	5,3	1,9

LGS and GaPO₄ BAW Y'-Cuts

LGS

f(T) for LGS Y'-Cuts

 $\frac{df}{f}(T) = a_2 \cdot (T - T_0)$

with $a_2 = -0,059 \ ppm \cdot K^{-2}$

Angle sensitivity for TOT: -0,4 K·arcmin⁻¹

from: Grouzinenko, V.B. et al., FCS 2001

f(T) for GaPO₄ Y'-cuts

Temperature Stability

f(T) - Comparison LGS vs. GaPO₄

A TAL Advanced Xtal Products

Temperature Stability

X Overall temp. stability LGS vs. GaPO₄

Temperature Stability

\times Hi-Temperature f(T) LGS vs. GaPO₄

Other features

✗ Drive level dependence (Anisochronism)

- Non-Linearity starts at higher vibration amplitudes than in quartz AT cut resonators
- Comparable (GaPO₄) or superior (LGS) to quartz SC-cut, while easier to manufacture due to single rotation
- Allows to drive resonators harder
 - Lower (phase) noise
 - Advantage in some sensor / actor applications

Anisochronism Results

AXTAL Advanced Xtal Products

LGS : Resonator Parameters

Freq [MHz]	R ₁ [Ohm]	C ₁ [fF]	C ₀ [pF]	r	Q
10,000	3,9	83	5	60	50.000
10,650	3,3	136	81	59	33.000
10,650	9,4	162	9,7	60	9.800
10,700	28,0	47	3,9	83	11.700
16,000	9,5	36	2,4	67	32.000
27,000	8,2	31	2,3	75	28.000

Enclosure: HC-52/U

Advanced Xtal Products

GaPO₄: Resonator Parameters

Freq [MHz]	R ₁ [Ohm]	C ₁ [fF]	C ₀ [pF]	r	Q
7,375	4,6	59	3,4	58	80.000
10,000	2,4	78	4,4	56	85.000
12,966	2,2	80	4,6	57	72.000
13,280	3,0	68			70.000
15,625	3,7	64	5,2	83	46.600
16,000	7,4	69	3,8	54	20.000
16,500	8,0	58			25.000
9,85/ 3rd OT	62	1,1	1,8	1719	244.000

Enclosure: HC-52/U

February 2003

LGS : Spurious Resonances

Enclosure: HC-52/U

GaPO₄: Spurious Resonances

Enclosure: HC-52/U

Temperature Compensation

Compensation of f(T) error (sensor applications) by using 2 resonators and subtracting the frequencies

Green: f(T) of reference resonator

others: residual f(T) error for TOT-difference of 1 K, 2K and 3K

LGS and GaPO₄ VCXO

D1 = hyperabrupt varactor

VCXO schematic

HC-52/U resonator & 9x14 mm VCXO

Pullability & Size

Typical Pulling Characteristics $f(C_L)$ of a 10 MHz LGS resonator in HC-52/U

Package HC-52/U (H = 8.0 mm)

VCXO Pulling characteristics

VCXO Pulling characteristics

≫ PR Limitation by spurious resonances

Even small spurious resonances distort the pulling characteristic.

Spurious resonances increase with larger electrode size and with electrode thickness.

Resonator design must take care of energy trapping.

VCXO Phase Noise

VCXO 16 MHz

LGS: $C_1 = 36 \text{ fF}$ Q=32 000

GaPO₄: $C_1 = 69 \text{ fF}$ Q=20 000

GaPO₄ and Quartz OCXO

🚿 OCXO in 4 pin DIL14 package 📗

requires a HC-52/U size resonator or smaller

- ➤ 10 MHz / 3rd overtone not realizable in HC-52/U with Quartz AT and SC
- ✗ GaPO₄ allows 10 MHz / 3rd due to lower frequency constant
- ✗ LGS would also allow 10 MHz / 3rd, but is not evaluated yet

GaPO₄ and Quartz OCXO

& GaPO₄ vs. Quartz AT & SC

Туре	Parameter	Value	Туре	Parameter	Value
$GaPO_4$ 3^{rd} overtone $Y^{-16^{\circ}} \cdot cut$ $HC-52/U$	Frequency R_1 C_1 C_0 Q r	9.85 MHz 62 Ω 1.06 fF 1.83 pF 244 000 1719	Quartz 3 rd overtone SC - cut HC-43/U	Frequency R_1 C_1 C_0 Q r	10 MHz 100 Ω 0.145 fF 2.17 pF 1 120 000 15 000
Quartz Fundamental AT – cut HC-52/U	Frequency R_1 C_1 C_0 Q r	12 MHz 10.4 Ω 11.5 fF 2.54 pF 111 000 220	Quartz 3 rd overtone AT - cut HC-43/U	Frequency R_1 C_1 C_0 Q r	10 MHz 140 Ω 0.30 fF 4.15 pF 390 000 14 000

February 2003

used

DIP OCXO Allan Variance

DIP OCXO Warm-up

OCXO with $GaPO_4$ resonator shows no overshoot, and is faster on frequency (after 60 sec), similar to SC-cut quartz crystal

Summary & Conclusions

- ✗ LGS and GaPO₄ show interesting capabilities for VCXO, OCXO and sensor applications
- ✗ VCXO in 9x14 mm size with high pulling range and low phase noise
- ✗ OCXO in DIP14 size using low-frequency 3rd overtone resonators

Summary & Conclusions

X VCXO in 9x14 mm size №

- Pulling range limited by spurious responses
 - Trade-off C_1 vs. Spurs
 - Energy trapping must be considered
- GaPO₄ offers better f(T) stability than LGS
- GaPO₄ shows in average higher Q value than LGS, close to Q-factors of quartz AT cuts
- Low anisochronism allows higher drive level

Summary & Conclusions

≫ OCXO 10 MHz in DIP14 size

- GaPO₄ Y^{-16°} cut is a good candidate for miniature OCXO with overtone resonators
- short-term stability is superior to quartz (AT fund) resonator of same size
- Warm-up time of GaPO₄ based OCXO is shorter and shows no overshoot as a quartz AT-cut
- OCXO performance of LGS not studied yet